## The first trialkylphosphane telluride complexes of Ag(I): molecular, ionic and supramolecular structural alternatives

Constantin Daniliuc, Christian Druckenbrodt, Cristian G. Hrib, Frank Ruthe, Armand Blaschette, Peter G. Jones and Wolf-W. du Mont\*

Received (in Cambridge, UK) 22nd January 2007, Accepted 14th March 2007 First published as an Advance Article on the web 11th April 2007 DOI: 10.1039/b700917h

The structures of the first phosphane telluride complexes of silver(1), obtained from *i*-Pr<sub>3</sub>PTe (1) with AgNMs<sub>2</sub> [Ms =  $SO_2CH_3$ ] and with AgSbF<sub>6</sub>, reveal the superior coordinating ability of 1, particularly as a bridging ligand, compared with related *i*-Pr<sub>3</sub>PS and *i*-Pr<sub>3</sub>PSe ligands.

In view of the softness of tellurium and of the dipolar character of the  $P^+$ -Te<sup>-</sup> bond, phosphane tellurides  $R_3PTe$  should act towards soft metal ions as ligands that are superior to the well-established phosphane oxides, sulfides and selenides. There are, however, only a few trialkylphosphane telluride complexes known, and t-Bu<sub>3</sub>PTeW(CO)<sub>5</sub> is the only one to be structurally characterized.<sup>1</sup> The tendency of R<sub>3</sub>PTe to decompose in the presence of Lewis acids (by detelluration)<sup>2</sup> and their kinetic lability in the presence of free phosphanes (reversible Te transfer)<sup>3</sup> has led to their use as carriers of zero valent tellurium,<sup>4</sup> for instance in the formation of semiconductor materials<sup>5</sup> or metal polytelluride ions such as  $[AgTe_7]^{3-.6}$  In the latter case, however, the role of phosphane telluride silver complexes was not recognized. Anionic bidentate phosphane tellurides are less susceptible to detelluration than uncharged phosphane tellurides,7 and coinage metal complexes with  $\{[R_2P(Te)]_2N\}^-$  ligands (R = *i*-Pr, Ph) were very recently reported by Chivers et al. at a scientific meeting.<sup>8</sup>

Our study on coinage metal chloride interactions with trialkylphosphane tellurides revealed that CuCl complexes with *i*-Pr<sub>3</sub>PTe (1) and with *t*-Bu<sub>3</sub>PTe are short-lived species that can be detected using <sup>31</sup>P-NMR spectroscopy before they decompose by loss of tellurium, giving the stable complexes R<sub>3</sub>PCuCl, whereas with the tetrahydrothiophene–AuCl complex, immediate precipitation of tellurium after addition of 1 leads to *i*-Pr<sub>3</sub>PAuCl.<sup>9</sup>

The complex *t*-Bu<sub>3</sub>PTeAgCl also decomposes within a short time, leading to *t*-Bu<sub>3</sub>PAgCl, but with *i*-Pr<sub>3</sub>PTe (1), after separation from a black residue, a solid yellow 1 : 1 complex can be characterized using elemental analyses and <sup>31</sup>P-NMR spectroscopy, exhibiting <sup>1</sup>J(<sup>125</sup>Te, <sup>31</sup>P) satellites with magnitudes about 15% smaller than those of the free ligand.<sup>9</sup>

*i*-Pr<sub>3</sub>PTe + CuCl → {*i*-Pr<sub>3</sub>PTeCuCl} → *i*-Pr<sub>3</sub>PCuCl + Te

t-Bu<sub>3</sub>PTe + AgCl  $\rightarrow$  {t-Bu<sub>3</sub>PTeAgCl}  $\rightarrow$  t-Bu<sub>3</sub>PAgCl + Te i-Pr<sub>3</sub>PTe + AgCl  $\rightarrow$  i-Pr<sub>3</sub>PTeAgCl

*i*-Pr<sub>3</sub>PTe + THT-AuCl → *i*-Pr<sub>3</sub>PAuCl + Te + THT

Institut für Anorg. u. Analyt. Chemie der Technischen Universität Braunschweig, Postfach 3329, D 38023 Braunschweig, Germany. E-mail: w.du-mont@tu-bs.de Our unsuccessful attempts to grow single crystals of *i*-Pr<sub>3</sub>PTeAgCl and *i*-Pr<sub>3</sub>PTeAgBr led us to use silver(I)–di(methyl-sulfonyl)amide [AgNMs<sub>2</sub>]<sup>10</sup> as an alternative substrate for *i*-Pr<sub>3</sub>PTe. By mixing the appropriate amounts of **1** with AgNMs<sub>2</sub> in acetonitrile, a set of stable 1 : 1, 2 : 1 and 3 : 1 phosphane telluride silver complexes **2** (1 : 1), **3** (2 : 1) and **4** (3 : 1) became available.<sup>†</sup>



<sup>31</sup>P-NMR spectra of **2–4** and of mixtures of **2–4** with ligand **1** in CH<sub>3</sub>CN or in CH<sub>2</sub>Cl<sub>2</sub> solution show averaged singlet signals with satellites from <sup>1</sup>J(<sup>125</sup>Te, <sup>31</sup>P) coupling; splitting by coupling with <sup>107,109</sup>Ag does not occur. Consistent with the kinetic lability of all complexes with respect to Te–Ag coordination, whereby rapid Te–P bond breaking does not occur, the <sup>125</sup>Te-NMR spectra of **2–4** exhibit doublet signals, the magnitudes of <sup>1</sup>J(<sup>125</sup>Te, <sup>31</sup>P) coupling following the order **2** < **3** < **4** < **1**.

Complexes 2–4 were studied by single crystal X-ray diffraction.‡ The 1 : 1 complex 2 (Fig. 1) is an inversion-symmetric molecular dimer with bridging tellurium atoms from the two *i*-Pr<sub>3</sub>PTe ligands; each Ag atom is also N-coordinated by a  $NMs_2^-$  anion (planar Ag, CN 3).<sup>9</sup> Compared with the related *i*-Pr<sub>3</sub>PS and *i*-Pr<sub>3</sub>PSe complexes,<sup>11</sup> 2 exhibits shorter Ag···Ag contacts (by about 0.18 Å) and slightly longer Ag–N bonds.

The overall formula of the 2 : 1 complex **3** (Fig. 2) is that of an unsymmetric dimer that contains one terminally N-coordinated and one uncoordinated  $NMs_2^-$  anion. In the dinuclear cation, *one i*-Pr<sub>3</sub>PTe bridges the two Ag atoms; Ag1 is 3-coordinated by the bridging and two terminal *i*-Pr<sub>3</sub>PTe ligands, and Ag2 is 3-coordinated by the  $NMs_2^-$  anion, the bridging and one terminal *i*-Pr<sub>3</sub>PTe ligands. This structure is very different from that of the



**Fig. 1** Molecular structure of  $[Ag_2(NMs_2)_2(i-Pr_3PTe)_2]$  (2). Selected distances (Å): Ag–Te 2.8117(6); Ag–Te#1 2.8024(6); Ag–N 2.258(3); Ag…Ag#1 2.9075(7).

related *i*-Pr<sub>3</sub>PS 2 : 1 complex which crystallizes as a simple monomer with terminal *i*-Pr<sub>3</sub>PS and  $NMs_2^{-1}$  ligands.<sup>11</sup>

The 3 : 1 complex 4 consists of  $Ag^+$  cations surrounded by three terminal *i*-Pr<sub>3</sub>PTe ligands in a regular trigonal geometry;<sup>11</sup> this ionic structure with separated  $NMs_2^-$  anions is closely related to those of the corresponding *i*-Pr<sub>3</sub>PS and *i*-Pr<sub>3</sub>PSe complexes.<sup>11</sup> However, the structure of 4 and of its SbF<sub>6</sub> analogue are affected by disorder or twinning phenomena and the refinements are unsatisfactory. The P–Te bond distances in 2–4 are between 2.40 and 2.43 Å (1: 236.8 pm);<sup>1</sup> significant differences between terminal and bridging ligands are not observed.



**Fig. 2** Cation of  $[Ag_2(NMs_2)(i\cdot Pr_3PTe)_4]^+NMs_2^-\cdot CH_3CN$  (3). Hydrogen atoms, solvent and the uncoordinated  $NMs_2^-$  group are omitted for clarity. The isopropyl groups at P4 are disordered over two positions. Selected distances (Å): Ag1–Te1 2.7281(9); Ag1–Te2 2.7638(9); Ag1–Te3 2.7181(9); Ag2–Te2 2.7947(9); Ag2–Te4 2.6956(9); Ag2–N1 2.422(7); Ag2…O3 2.773(6); Ag1…Ag2 3.1437(11).



Fig. 3 One of two crystallographically independent cationic chains in  $[Ag(i-Pr_3PTe)_2]SbF_6$  (5). Hydrogen atoms are omitted for clarity. Selected distances (Å): chain 1, not shown: Ag1–Te1 2.9359(7); Ag1–Te2 2.8557(7); Ag1–Te#1 2.7857(7); Ag1–Te#2 2.8036(7); chain 2: Ag2–Te3 2.7943(7); Ag2–Te4 2.7692(7); Ag2–Te#3 2.8740(7); Ag2–Te#4 2.9011(7).



Fig. 4 Weak cation–cation contacts in  $[Ag(i-Pr_3PSe)_2]SbF_6$  (6). Hydrogen atoms are omitted for clarity. Selected distances (Å): Ag–Sel 2.5067(3); Ag–Se2 2.4975(3); Ag–Se#1 3.1201(3); Ag–Se#2 3.3206(3).

The structural features of **2** and **3** confirm that the ability of i-Pr<sub>3</sub>PTe (1) to coordinate with Ag<sup>+</sup> (in competition with anionic NMs<sub>2</sub><sup>-</sup>) is superior to that of i-Pr<sub>3</sub>PS and i-Pr<sub>3</sub>PSe. In the dimeric 1 : 1 complex **2**, coordinating **1** leads to a longer (weaker) Ag–N contact; in the dimeric 2 : 1 complex **3**, coordinating **1** expels one NMs<sub>2</sub><sup>-</sup> ligand and the preferred CN 3 of Ag is retained by the bridging role of one the four *i*-Pr<sub>3</sub>PTe ligands.

The special role of i-Pr<sub>3</sub>PTe as a bridging ligand is even more evident in the 2 : 1 complex 5 with AgSbF<sub>6</sub> (Fig. 3).

In contrast to the related solid *i*-Pr<sub>3</sub>PE complexes (E = S, Se), which are made up from cations  $[Ag(i-Pr_3PE)_2]^+$  (linear E–Ag–E) exhibiting weak "step-like" cation–cation contacts (Fig. 4; 6: Ag–Se 2.49–2.50 Å; Ag···Se 3.12–3.32 Å),<sup>11</sup> [Ag(*i*-Pr<sub>3</sub>PTe)<sub>2</sub>]SbF<sub>6</sub> (5) contains a cationic coordination polymer<sup>12</sup> that involves a linear spirocyclic array of centrosymmetric four-membered Ag<sub>2</sub>Te<sub>2</sub> rings (Ag–Te 2.769–2.901 Å).

All *i*-Pr<sub>3</sub>PTe ligands in **5** are bridging and the Ag<sup>+</sup> ions lie in a distorted tetrahedral environment of four trigonal-pyramidally coordinated Te atoms.

In summary, trialkylphosphane tellurides can act as excellent *soft bridging ligands*, which deserve particular interest beyond their role as sources of tellurium atoms.

## Notes and references

† Selected spectroscopic data: 2: Yield 60.4%; found: C, 23.6; H, 4.8; N, 2.4. C<sub>11</sub>H<sub>27</sub>AgNO<sub>4</sub>PS<sub>2</sub>Te requires C, 23.3; H, 4.8; N, 2.5%; MS (FAB[NBA]): m/z 962 [{(*i*-Pr<sub>3</sub>PTe)<sub>2</sub>Ag<sub>2</sub>NMs<sub>2</sub>}<sup>+</sup>, 15%], 683 [{(*i*-Pr<sub>3</sub>PTe)<sub>2</sub>Ag}<sup>+</sup>, 88], 557  $\begin{array}{l} [\{(i\text{-}Pr_3\text{PTe})(i\text{-}Pr_3\text{P})\text{Ag}\}^+, 62], 397 \ [\{(i\text{-}Pr_3\text{PTe})\text{Ag}\}^+, 60], 267 \ [(i\text{-}Pr_3\text{P}\text{Ag})^+, 100]; \\ \delta_H \ (300.1 \ \text{MHz}; \ \text{CD}_3\text{CN}; \ \text{Me}_4\text{Si}) \ 2.84 \ (3H, \text{s}, \text{SC}H_3), 2.57 \ (1H, \text{d sept}, J_{\text{HH}} \ 7.1, J_{\text{HP}} \ 9.9, \ CH(\text{CH}_3)_2), 1.23 \ (6H, \text{dd}, J_{\text{HH}} \ 7.1, J_{\text{HP}} \ 17.4, \ \text{CH}(\text{CH}_3)_2); \\ \delta_C \ (75.4 \ \text{MHz}; \ \text{CD}_3\text{CN}; \ \text{Me}_4\text{Si}) \ 43.02 \ (\text{s}, \ \text{SCH}_3), 27.73 \ (\text{d}, J_{\text{CP}} \ 28.0, CH(\text{CH}_3)_2); 19.79 \ (\text{d}, J_{\text{CP}} \ 2.8, \ \text{CH}(\text{CH}_3)_2); \\ \delta_P \ (121.5 \ \text{MHz}; \ \text{CD}_3\text{CN}; \ 85\% - \text{H}_3\text{PO}_4) \ 48.21 \ (\text{s}, J_{\text{P-125-Te}} \ 1418.6, J_{\text{P-123-Te}} \ 1176.5, J_{\text{PC}} \ 27.9); \\ \delta_{\text{Te}} \ (94.7 \ \text{MHz}; \text{CD}_3\text{CN}; \ \text{Me}_2\text{Te}) \ -825.18 \ (\text{d}, J_{\text{TeP}} \ 1419.5). \end{array}$ 

3: Yield 81.1%; found: C, 28.2; H, 5.9.  $C_{20}H_{48}AgNO_4P_2S_2Te_2$  requires C, 28.1; H, 5.7%; MS (FAB[NBA]): m/z 683 [{(*i*-Pr\_3PTe)\_2Ag}<sup>+</sup>, 100%], 557 [{(*i*-Pr\_3PTe)(*i*-Pr\_3P)Ag}<sup>+</sup>, 30], 397 [{(*i*-Pr\_3PTe)Ag}<sup>+</sup>, 42], 267 [(*i*-Pr\_3PAg)<sup>+</sup>, 40];  $\delta_{\rm H}$  (300 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 2.75 (3H, s, SCH<sub>3</sub>), 2.3–2.5 (1H, m, CH(CH<sub>3</sub>)<sub>2</sub>), 1.23 (6H, dd, J<sub>HH</sub> 7.1, J<sub>HP</sub> 17.3, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_{\rm C}$  (75.4 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 42.67 (s, SCH<sub>3</sub>), 27.20 (d, J<sub>CP</sub> 28.3, CH(CH<sub>3</sub>)<sub>2</sub>), 19.74 (d, J<sub>CP</sub> 1.9, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_{\rm P}$  (121.5 MHz; CD<sub>3</sub>CN; 85%-H<sub>3</sub>PO<sub>4</sub>) 47.33 (s, J<sub>P-125-Te</sub> 1451.6, J<sub>P-123-Te</sub> 14204.0, J<sub>PC</sub> 28.1);  $\delta_{\rm Te}$  (94.7 MHz; CD<sub>3</sub>CN; Me<sub>2</sub>Te) – 860.74 (d, J<sub>TeP</sub> 1451.9).

4: Yield 82%; found: C, 31.3; H, 5.9; N, 1.2; S, 5.2.  $C_{29}H_{69}AgNO_4P_3S_2Te_3$  requires C, 30.5; H, 6.0; N, 1.2; S, 5.6%; MS (FAB[NBA]) m/z 685 [{(*i*-Pr\_3PTe)\_2Ag}<sup>+</sup>, 100%], 557 [{(*i*-Pr\_3PTe)(*i*-Pr\_3P)Ag}<sup>+</sup>, 16], 397 [{(*i*-Pr\_3PTe)Ag}<sup>+</sup>, 40], 267 [(*i*-Pr\_3PAg)<sup>+</sup>, 30];  $\delta_H$  (300 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 2.72 (3H, s, SCH<sub>3</sub>), 2.41 (1H, d sept, CH(CH<sub>3</sub>)<sub>2</sub>), 1.20 (6H, dd, J<sub>HH</sub> 7.1, J<sub>HP</sub> 17.1, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_C$  (75.4 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 42.62 (s, SCH<sub>3</sub>), 27.20 (d, J<sub>CP</sub> 2.8, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_P$  (121.5 MHz; CD<sub>3</sub>CN; 85%-H<sub>3</sub>PO<sub>4</sub>) 45.47 (s, J<sub>P-125-Te</sub> 1498.6, J<sub>P-123-Te</sub> 1246.1, J<sub>PC</sub> 27.9);  $\delta_{Te}$  (94.7 MHz; CD<sub>3</sub>CN; Me<sub>2</sub>Te) -892.45 (d, J<sub>TeP</sub> 1501.7).

5: Yield 84.6%; found: C, 23.5; H, 4.6.  $C_{18}H_{42}AgF_6P_2SbTe_2$  requires C, 23.7; H, 4.5%; MS (FAB[NBA]) *mlz* 683 [{(*i*-Pr<sub>3</sub>PTe)<sub>2</sub>Ag}<sup>+</sup>, 100], 557 [{(*i*-Pr<sub>3</sub>PTe)(*i*-Pr<sub>3</sub>P)Ag}<sup>+</sup>, 12], 397 [{(*i*-Pr<sub>3</sub>PTe)Ag}<sup>+</sup>, 35];  $\delta_{H}$  (300 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 2.54 (1H, d sept, *J*<sub>HH</sub> 7.1, *J*<sub>HP</sub> 9.9, CH(CH<sub>3</sub>)<sub>2</sub>), 1.28 (6H, dd, *J*<sub>HH</sub> 7.1, *J*<sub>HP</sub> 16.8, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_{C}$  (75.4 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 2.71 (CH<sub>3</sub>)<sub>2</sub>), 19.68 (d, *J*<sub>CP</sub> 2.8, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_{P}$  (121.5 MHz; CD<sub>3</sub>CN; 85%-H<sub>3</sub>PO<sub>4</sub>) 48.20 (s, *J*<sub>PL125Te</sub> 1434.8, *J*<sub>PC</sub> 28.7);  $\delta_{Te}$  (94.7 MHz; CD<sub>3</sub>CN; Me<sub>2</sub>Te) -848.20 (d, *J*<sub>TeP</sub> 1435.6).

6: Yield 91.5%; found: C, 26.3; H, 5.1.  $C_{18}H_{42}AgF_6P_2SbSe_2$  requires C, 26.4; H, 5.1%; MS (FAB[NBA]) *mlz* 587 [{(*i*-Pr\_3PSe)\_2Ag}<sup>+</sup>, 100], 347 [{(*i*-Pr\_3PSe)\_Ag}<sup>+</sup>, 64];  $\delta_{H}$  (200 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 2.85 (3H, s, SCH<sub>3</sub>), 2.53 (1H, d sept, J<sub>HH</sub> 7.1, J<sub>HP</sub> 10.8, CH(CH<sub>3</sub>)<sub>2</sub>), 1.29 (6H, dd, J<sub>HH</sub> 7.1, J<sub>HP</sub> 16.9, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_C$  (50.2 MHz; CD<sub>3</sub>CN; Me<sub>4</sub>Si) 42.64 (s, SCH<sub>3</sub>), 27.63 (d, J<sub>CP</sub> 36.4, CH(CH<sub>3</sub>)<sub>2</sub>), 18.34 (d, J<sub>CP</sub> 2.8, CH(CH<sub>3</sub>)<sub>2</sub>);  $\delta_P$  (81.0 MHz; CD<sub>3</sub>CN; 85%-H<sub>3</sub>PO<sub>4</sub>) 73.70 (s, J<sub>PSe</sub> 579.1, J<sub>PC</sub> 36.1);  $\delta_{Se}$  (38.1 MHz; CD<sub>3</sub>CN; Me<sub>2</sub>Se) -466.70 (d, J<sub>SeP</sub> 579.8).

‡ Crystal data: **2**: C<sub>22</sub>H<sub>54</sub>Ag<sub>2</sub>N<sub>2</sub>O<sub>8</sub>P<sub>2</sub>S<sub>4</sub>Te<sub>2</sub>;  $M_r = 1135.8$ , monoclinic, space group P2<sub>1</sub>/n, a = 11.7663(15), b = 7.794(2), c = 21.802(4) Å,  $\beta = 105.457(15)^\circ$ , V = 1927.1(6) Å<sup>3</sup>, Z = 2, T = 143 K,  $\mu = 2.841$  mm<sup>-1</sup>; pale yellow block. Of 3602 reflections measured, 3396 were independent ( $R_{int} = 0.0208$ ). Final R1 = 0.0359, wR2 = 0.0594 (all data).

**3** (acetonitrile solvate):  $C_{42}H_{99}Ag_2N_3O_8P_4S_4Te_4$ ;  $M_r = 1752.50$ , monoclinic, space group  $P2_1/n$ , a = 11.4760(15), b = 15.363(3), c = 38.378(3) Å,  $\beta = 93.962(10)^\circ$ , V = 6749.9(15) Å<sup>3</sup>, Z = 4, T = 143 K,  $\mu = 2.536$  mm<sup>-1</sup>; pale yellow block. Of 12 445 reflections measured, 11 815 were independent ( $R_{int} = 0.0387$ ). Final R1 = 0.0838, wR2 = 0.1086 (all data).

5: C<sub>18</sub>H<sub>42</sub>AgF<sub>6</sub>P<sub>2</sub>SbTe<sub>2</sub>;  $M_r$  = 919.28, monoclinic, space group  $P2_1/c$ , *a* = 28.5566(15), *b* = 8.4221(5), *c* = 28.2425(15) Å, *β* = 118.884(1)°, *V* = 5947.5(6) Å<sup>3</sup>, *Z* = 8 (monomers), *T* = 143 K,  $\mu$  = 3.640 mm<sup>-1</sup>; yellow

prism. Of 107 897 reflections measured, 15 108 were independent ( $R_{int} = 0.0850$ ). Final R1 = 0.0910, wR2 = 0.0957 (all data).

**6**: C<sub>18</sub>H<sub>42</sub>AgF<sub>6</sub>P<sub>2</sub>SbSe<sub>2</sub>;  $M_r$  = 822.00, monoclinic, space group  $P2_1/n$ , *a* = 8.6889(6), *b* = 23.6812(16), *c* = 13.6253(10) Å, β = 92.965(3)°, *V* = 2799.8(3) Å<sup>3</sup>, *Z* = 4, *T* = 143 K, μ = 4.423 mm<sup>-1</sup>; colourless prism. Of 59 721 reflections measured, 8562 were independent ( $R_{int}$  = 0.0748). Final R1 = 0.0341, wR2 = 0.0709 (all data).

Data were recorded using Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) on a Stoe STADI-4 (**2**, **3**;  $2\theta_{\text{max}}$  50°) or Bruker SMART 1000 CCD diffractometer (**5**, **6**;  $2\theta_{\text{max}}$  56°, 61°). Refinements were performed with the program SHELXL-97.<sup>13</sup> CCDC 611403 (**2**), 611440 (**3**), 636033 (**5**), 636034 (**6**). For crystallographic data in CIF or other electronic format, see DOI: 10.1039/b700917h

- (a) N. Kuhn, H. Schumann and G. Wolmershäuser, J. Chem. Soc., Chem. Commun., 1985, 1595–1597; (b) N. Kuhn and H. Schumann, J. Chem. Soc., Dalton Trans., 1987, 541–544; (c) N. Kuhn, G. Henkel, H. Schumann and R. Fröhlich, Z. Naturforsch., B: Chem. Sci., 1990, 45, 1010–1018.
- 2 A. M. Brodie, G. A. Rodley and C. J. Wilkins, J. Chem. Soc. A, 1969, 2927–2929.
- 3 (a) W.-W. du Mont and H. J. Kroth, J. Organomet. Chem., 1976, 113, C35; (b) W.-W. du Mont, Z. Naturforsch., B: Anorg. Chem., Org. Chem., 1985, 40, 1453–1456.
- 4 W.-W. du Mont, Angew. Chem., Int. Ed. Engl., 1980, 19, 554-555.
- 5 M. L. Steigerwald and C. R. Sprinkle, Organometallics, 1988, 7, 245–246.
- 6 D. M. Smith, L. C. Roof, M. A. Ansari, J. M. McConnachie, J. C. Bollinger, M. A. Pell, R. J. Salm and J. A. Ibers, *Inorg. Chem.*, 1996, **35**, 4999–5006.
- 7 M. Lusser and P. Peringer, *Inorg. Chim. Acta*, 1987, **127**, 151–152.
- 8 (a) T. Chivers, 11th International Symposium on Inorganic Ring Systems, Oulu, Finland, 2006, Abstract L5; (b) T. Chivers, J. Konu, J. S. Ritch, M. C. Copsey, D. J. Eisler and H. M. Tuononen, J. Organomet. Chem, 2007, DOI: 10.1016/j.jorganchem.2006.11.029; (c) M. C. Copsey, A. Panneerselvam, M. Afzaal, T. Chivers and P. O'Brien, Dalton Trans., 2007, 1528–1538.
- 9 C. Druckenbrodt, PhD thesis, TU Braunschweig, 2000; C. Druckenbrodt and W.-W. du Mont, 34th International Conference on Coordination Chemistry, Edinburgh, UK, 2000, poster abstract P0285.
- 10 E.-M. Zerbe, P. G. Jones, O. Moers and A. Blaschette, Z. Anorg. Allg. Chem., 2005, 631, 2623–2628.
- 11 C. Daniliuc, PhD thesis, TU Braunschweig, 2007 (in preparation); W.-W. du Mont, C. Daniliuc, C. Druckenbrodt and J. Jeske, 2nd JSPS Core to Core Meeting: Innovative Synthesis of Novel Main-Group Compounds and Its Application, JSPS, Tokyo, 2006.
- 12 Related polymeric cations with thioamide-like ligands: (a) J. Sola, A. Lopez, R. A. Coxall and W. Clegg, *Eur. J. Inorg. Chem.*, 2004, 4871–4881; (b) M. Yazdanbakhsh, M. Hakimi, M. M. Heravi, M. Ghassemzadeh and B. Neumüller, *Z. Anorg. Allg. Chem.*, 2005, 631, 924–927.
- 13 G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997.